Coronavirus vaccine research is moving at record speed
To scientists, the work to create a vaccine against the new coronavirus is advancing with a speed they could barely have imagined a decade ago. At the same time, it’s not even close to quick enough to contain the spreading infection — and in many ways, the outbreak will test the capacity of science to react in real time to a new and unknown “pathogen X” that takes the world by surprise.
“Traditional vaccine development efforts have usually taken decades, not months,” said Barney Graham, deputy director of the Vaccine Research Center at the National Institutes of Health, which hopes to have a vaccine in human testing by April. “This is, first, a response to this new virus, but it’s also a drill for pathogen X … [to] press the system, to see how rapidly we can go.”
When a mysterious new illness emerges and public alarm is at its peak, there’s a race to develop a way to prevent or treat the disease. But by the time a promising candidate is ready, it’s often too late to be helpful against the outbreak that triggered the rush. Public interest, funding and the urgency that drove the early vaccine development can quickly taper.
“We were getting candidate vaccines, the epidemics would die down, and they’d get put back on the shelf,” said Jacqueline Shea, chief scientific officer of Inovio, a biotech company that has been developing vaccines for Zika, Ebola and Middle East respiratory syndrome.
That’s what happened with severe acute respiratory syndrome (SARS), to the dismay of Peter Jay Hotez, co-director of the Texas Children’s Hospital Center for Vaccine Development. Eight years ago, he and his co-director, Maria Elena Bottazzi, won federal funding to create a vaccine against SARS, a coronavirus that emerged in 2002 and infected 8,000 people and killed nearly 800. By 2016, they had manufactured enough of the potential vaccine to get through toxicology tests and human safety trials.
But the team tried and failed to win various grants to bring their experimental vaccine through further testing. They say about $2 million could have funded essential and time-consuming toxicology studies and ready it for phase 1 trials — the technical term for the first-in-humans studies that typically determine the dosing and safety of a drug. Although the threat of SARS has receded, it was becoming increasingly clear that coronaviruses, long thought to cause mild illness, were able to cause serious pandemics.
When the new coronavirus genome sequence was posted to an online genetic databank in early January, Hotez immediately saw the close similarity to SARS and realized the samples sitting in storage had the potential to defend against the new virus.
“Had we been able to secure the investment, we could have done all the phase 1 trials. We could have potentially been ready to vaccinate in China, now,” Hotez said. “This is the problem with the whole vaccine infrastructure — it’s reactive, not anticipatory enough. ‘Oh, SARS is gone now, let’s move on.’”